OPTICAL PARAMETERS OF PHOTORESISTS # Mathematical Formulation of Exposure: Absorption, Cauchy and Dill ## Absorption The absorption coefficient α , the light intensity I in the depth d of the resist film (based on the incident intensity I_{α}) and the extinction coefficient k are related to the wavelength λ as follows: $$\alpha = \frac{4\pi \ k}{\lambda} \qquad I = I_0 \exp(-\alpha \ d)$$ The reciprocal value of α denotes the penetration depth of light after which the light intensity has dropped to 1/e. In the case of typical positive resists, the penetration depth is between about 0.5 and 2.0 μ m. ## Cauchy Constants The Cauchy constants N_1 , N_2 and N_3 which are dependent on the already absorbed light dose for each photoresist (generally assumed to be solvent-free), describe the refractive index n as a function of the wavelength (unit μ m) as follows: $n = N_1 + \frac{N_2}{\lambda^2} + \frac{N_3}{\lambda^4}$ The Cauchy constants are usually given in the unexposed (unbleached) and fully exposed (bleached) state. It should be noted that the Cauchy constants are fitted from the values of n measured in the visible spectral range and only apply there. The spectral progression $n(\lambda)$ in the spectral range of the absorption of the photoresist *cannot* be calculated from the Cauchy constants. ### **Dill Parameters** The wavelength-dependent Dill parameters describe the extinction coefficients of photoresist as a function of the (possibly reduced by exposure) concentration of photoinitiator PAC (0 = fully exposed, 1 = unexposed) as follows: $$k = \lambda \frac{A(\lambda) \cdot PAC + B(\lambda)}{4\pi}$$ ### **Numerical Values for Photoresists** Data on the Cauchy constants and Dill parameters as well as the refractive index and extinction coefficients with the g-, h- and i-line for certain photoresists can be found in the tables on the next page. Each column lists the values for a particular resist family (e.g. AZ® 4500 for the AZ® 4533 and 4562, the values of the AZ® ECI 3027 also apply to the AZ® ECI 3012 and AZ® ECI 3007). | Resist
Series: | AZ®
1500 | AZ®
5214E | AZ®
6600 | AZ®
9200 | AZ®
701MiR | AZ® ECI
3027 | AZ® nLOF
2000 | Resist
Series: | AZ® 4500 | AZ® 520D | AZ® 40 XT | AZ® 15 nXT | AZ® 125 nXT | |--|-------------|--------------|-------------|-------------------------------|---------------|-----------------|------------------|--------------------------------------|------------|-----------|---------------------------------|------------|-------------| | | | | Refractive | Refractive Index and Extincti | Extinction | | | | | Refract | Refractive Index and Extinction | Extinction | | | bleached | | | | | | | | bleached | | | | | | | n (365 nm) | 1.6994 | 1.6904 | 1.6967 | 1.6954 | 1 | 1.6913 | | <i>n</i> (365 nm) | | | | | | | k (365 nm) | 0.0058 | 0.0012 | 0.0036 | 0.0002 | 1 | 0.0017 | | k (365 nm) | | | | | | | n (405 nm) | 1.6714 | 1.6667 | 1.6720 | 1.6724 | - | 1.6670 | | <i>n</i> (405 nm) | | | | | | | k (405 nm) | 0.0010 | 0.0005 | 0.0021 | 0.0002 | | 0.0010 | | k (405 nm) | | | | | | | n (435 nm) | 1.6571 | 1.6534 | 1.6586 | 1.6572 | ł | 1.6530 | | n (435 nm) | | | | | | | k (435 nm) | 0.0003 | 0.0004 | 0.0018 | 0.0002 | 1 | 0 | | k (435 nm) | | | | | | | unbleached | 7 | | | | | | | unbleached | | | | | | | n (365 nm) | 1.7123 | 1,6990 | 1.7112 | 1.6963 | 1.7039 | 1,7014 | 1.6389 | n (365 nm) | | - | 1.644 | 1.6807 | 1.582 | | k (365 nm) | 0.0358 | 0.0175 | 0.0353 | 0.0117 | 0.0214 | 0.0202 | | k (365 nm) | | - | | 0.0027 | 0.0013 | | n (405 nm) | 1.6906 | 1,6888 | 1.6953 | 1.6862 | 1 | 1.6803 | 1.6173 | n (405 nm) | | - | | | | | k (405 nm) | 0.0336 | 0.0179 | 0.0383 | 0.0134 | ì | 0.0244 | | k (405 nm) | | - | | | | | n (435 nm) | 1.6948 | 1.6758 | 1,7035 | 1.6722 | 1.6917 | 1,6826 | 1.6015 | n (435 nm) | | 1 | | | | | k (435 nm) | 0.0227 | 0.0040 | 0.0222 | 0.0019 | 0.0189 | 0.0166 | | k (435 nm) | | - | | | | | | | | Can | Cauchy Constants | nts | | | | | | Cauchy Constants | ants | | | bleached | | | | | | | | bleached | | | | | | | d_{Layer} (nm) | 1589 | 1390.3 | 1571 4 | 2035 | i | ł | | d _{Laver} (nm) | | | | | | | ∨ 1 | 1.5966 | 1.5908 | 1.6032 | 1.6089 | 1.6057 | 1.5952 | | N ₁ | | | | | | | $N_2 (\mu m^2)$ | 0.0037577 | 0.011525 | 0.01088 | 0.0025069 | 0.00673 | 0.008451 | | N_2 (μm^2) | | | | | | | N ₃ (μm ⁴) | 2.45E-3 | 6.70E-07 | 2.48E-04 | 4.28E-03 | 0.00094 | 0,000656 | | N ₃ (µm ⁴) | | | | | | | unbleached | 7 | | | | | | | unbleached | | | | | | | d_{Layer} (nm) | 1584.6 | 1414.7 | 1645.2 | 2018.2 | į | ļ | ł | d_{Layer} (nm) | 0009 | | | | | | N | 1.5996 | 1.6035 | 1.6139 | 1.5995 | 1.6104 | 1.6018 | 1.4402 | \mathcal{N}_1 | 1,5761 | 1.6403 | 1.560 | 1,5754 | 1.5206 | | $N_2 (\mu m^2)$ | 0.013498 | 0.0055741 | 0.01135 | 0.0099583 | 0.00505 | | 0,040151 | N_2 (μm^2) | -0.0047025 | -0.054863 | 0.007 | 0.013242 | 0.008114 | | N ₃ (μm ⁴) | 1.88E-04 | 2.34E-03 | 8 93E 04 | 7 16E 04 | 0.00171 | 0.000686 | -1,8223E-03 | N ₃ (µm ⁴) | 0.003569 | 0.018217 | 90000 | 0 | -0.000217 | | | | | | Dil Parameters | S. | | | | | | Dill Parameters | ers | | | 365 nm | | | | | | | | 365 nm | | | | | | | A (µm-1) | 1.0133 | 0.6181 | 1 | 0.4388 | 0.7090 | 0.64 | | A (µm-¹) | | 1 | | | | | B (µm-¹) | 0.2177 | 0.0314 | - | 0.0219 | 0.0342 | 0.075 | | В (µm ⁻¹) | | 1 | | | | | C (cm ² /m ³) | 0.0239 | 0.0284 | ! | 0.0222 | 0.0220 | 0.0159 | | C (cm ² /mJ) | | 1 | | | | | 405 nm | | | | | | | | 405 nm | | | | | | | A (µm-¹) | ł | ł | 1 | 0.4245 | ; | 0.76 | | A (µm ⁻¹) | | - | | | | | B (µm ⁻¹) | - | } | | 0.0212 | ; | 0.035 | | B (µm ⁻¹) | | - | | | | | C (cm ² /m ³) | ! | : | ! | 0.0215 | ! | 0.0244 | | C (cm ² /mJ) | | - | | | | | 435 nm | | | | | | | | 435 nm | | | | | | | A (µm-¹) | ! | ł | 0.5193 | 0.0965 | ; | 0.45 | | A (µm ⁻¹) | | + | | | | | B (µm ⁻¹) | ł | ; | 0.0332 | 0.0220 | ; | 0.036 | | B (µm ⁻¹) | | - | | | | | $C \left(\text{cm}^2 / \text{mJ} \right)$ | | | 0.0079 | 0.0175 | 1 | 0.0152 | | C (cm ² /m ³) | | } | | | | ## **Our Photoresists: Application Areas and Compatibilities** | | Recommended Applications 1 | Resist Family | Photoresists | Resist Film
Thickness ² | Recommended Developers ³ | Recommended Removers 4 | |----------------------------------|---|--|--|--|--|--| | | | AZ [®] 1500 | AZ [®] 1505
AZ [®] 1512 HS
AZ [®] 1514 H
AZ [®] 1518 | ≈ 0.5 µm
≈ 1.0 - 1.5 µm
≈ 1.2 - 2.0 µm
≈ 1.5 - 2.5 µm | AZ [®] 351B, AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] Developer | | | | Improved adhesion for wet etching, no focus on steep resist sidewalls | AZ [®] 4500 | AZ [®] 4533
AZ [®] 4562 | ≈ 3 - 5 µm
≈ 5 - 10 µm | AZ [®] 400K, AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] 826 MIF | AZ® 100 Remover, | | tive | | AZ [®] P4000 | AZ [®] P4110
AZ [®] P4330
AZ [®] P4620
AZ [®] P4903 | ≈ 1 - 2 µm
≈ 3 - 5 µm
≈ 6 - 20 µm
≈ 10 - 30 µm | AZ [®] 400K, AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] 826 MIF | | | Positive | Correct accepting | AZ [®] PL 177
AZ [®] 4999 | AZ [®] PL 177 | | AZ® 351B, AZ® 400K, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF | TechniStrip [®] P1316 — TechniStrip [®] P1331 | | - | Spray coating Dip coating | MC Dip Coating F | Paciet | | AZ® 400K, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF
AZ® 351B, AZ® 400K, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF | | | | Steep resist sidewalls, high resolution and aspect ratio for e. g. dry etching or | AZ® ECI 3000 | AZ [®] ECI 3007
AZ [®] ECI 3012
AZ [®] ECI 3027 | ≈ 0.7 µm
≈ 1.0 - 1.5 µm
≈ 2 - 4 µm | AZ [®] 351B, AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] Developer | | | | plating | AZ® 9200 | AZ [®] 9245
AZ [®] 9260 | ≈ 3 - 6 µm
≈ 5 - 20 µm | AZ [®] 400K, AZ [®] 326 MIF, AZ [®] 726 MIF | | | | Elevated thermal softening point and high resolution for e. g. dry etching | AZ® 701 MiR | AZ [®] 701 MiR (14 cPs)
AZ [®] 701 MiR (29 cPs) | ≈ 0.8 µm
≈ 2 - 3 µm | AZ [®] 351B, AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] Developer | | | Positive
(chem.
amplified) | Steep resist sidewalls, high resolution and aspect ratio for e. g. dry etching or plating | AZ [®] XT AZ [®] IPS 6050 | AZ [®] 12 XT-20PL-05
AZ [®] 12 XT-20PL-10
AZ [®] 12 XT-20PL-20
AZ [®] 40 XT | ≈ 15 - 50 µm | AZ [®] 400K, AZ [®] 326 MIF, AZ [®] 726 MIF | AZ [®] 100 Remover,
TechniStrip [®] P1316
TechniStrip [®] P1331 | | | | | LA7® 5000 | ≈ 20 - 100 µm | | | | Image
Re-
versal | Elevated thermal softening point and undercut for lift-off applications | AZ [®] 5200 | AZ [®] 5209
AZ [®] 5214
TI 35ESX | ≈ 1 µm
≈ 1 - 2 µm
≈ 3 - 4 µm | AZ [®] 351B, AZ [®] 326 MIF, AZ [®] 726 MIF | TechniStrip [®] Micro D2
TechniStrip [®] P1316 | | In
I | инастействі інсені арріпоацона | TI | TI xLift-X | ≈ 4 - 8 µm | | TechniStrip [®] P1331 | | <u> </u> | Negative resist sidewalls in combination with no thermal softening for lift-off application | AZ [®] nLOF 2000 | AZ [®] nLOF 2020
AZ [®] nLOF 2035
AZ [®] nLOF 2070 | ≈ 1.5 - 3 µm
≈ 3 - 5 µm
≈ 6 - 15 µm | AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] 826 MIF | TechniStrip® NI555 TechniStrip® NF52 TechniStrip® MLO 07 | | Negative
(Cross-linking) | | AZ [®] nLOF 5500 | AZ [®] nLOF 5510 | ≈ 0.7 - 1.5 µm | | | | | Improved adhesion, steep resist sidewalls and high aspect ratios for e. g. dry etching or plating | | AZ [®] 15 nXT (115 cPs)
AZ [®] 15 nXT (450 cPs) | ≈ 2 - 3 µm
≈ 5 - 20 µm | AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] 826 MIF | - recnnistrip MLO 07 | | | | AZ [®] nXT | AZ [®] 125 nXT | ≈ 20 - 100 µm | AZ [®] 326 MIF, AZ [®] 726 MIF, AZ [®] 826 MIF | TechniStrip® P1316 TechniStrip® P1331 TechniStrip® NF52 TechniStrip® MLO 07 | # **Our Developers: Application Areas and Compatibilities** #### **Inorganic Developers** (typical demand under standard conditions approx. 20 L developer per L photoresist) AZ® Developer is based on sodium phosphate and –metasilicate, is optimized for minimal aluminum attack and is typically used diluted 1:1 in DI water for high contrast or undiluted for high development rates. The dark erosion of this developer is slightly higher compared to other developers. AZ® 351B is based on buffered NaOH and typically used diluted 1:4 with water, for thick resists up to 1:3 if a lower contrast can be tolerated. AZ® 400K is based on buffered KOH and typically used diluted 1 : 4 with water, for thick resists up to 1 : 3 if a lower contrast can be tolerated. AZ® 303 specifically for the AZ® 111 XFS photoresist based on KOH / NaOH is typically diluted 1:3-1:7 with water, depending on whether a high development rate, or a high contrast is required ## Metal Ion Free (TMAH-based) Developers (typical demand under standard conditions approx. 5 - 10 L developer concentrate per L photoresist) AZ® 326 MIF is 2.38 % TMAH- (TetraMethylAmmoniumHydroxide) in water. ² Resist film thickness achievable and processable with standard equipment under standard conditions. Some resists can be diluted for lower film thicknesses; with additional effort also thicker resist films can be achieved and processed. reasonable if metal ion free development is reAZ® 726 MIF is 2.38 % TMAH- (TetraMethylAmmoniumHydroxide) in water, with additional surfactants for rapid and uniform wetting of the substrate (e. g. for puddle development) **AZ® 826 MIF** is 2.38 % TMAH- (<u>TetraMethylAmmoniumHy</u>droxide) in water, with additional surfactants for rapid and uniform wetting of the substrate (e. g. for puddle development) and other additives for the removal of poorly soluble resist components (residues with specific resist families), however at the expense of a slightly higher dark erosion. ### Our Removers: Application Areas and Compatibilities AZ[®] 100 Remover is an amine solvent mixture and standard remover for AZ[®] and TI photoresists. To improve its performance, AZ[®] 100 remover can be heated to 60 - 80°C. Because the AZ[®] 100 Remover reacts highly alkaline with water, it is suitable for this with respect to sensitive substrate materials such as Cu, Al or ITO only if contamination with water can be ruled out.. **TechniStrip® P1316** is a remover with very strong stripping power for Novolak-based resists (including all AZ® positive resists), epoxy-based coatings, polyimides and dry films. At typical application temperatures around 75°C, TechniStrip® P1316 may dissolve cross-linked resists without residue also, e.g. through dry etching or ion implantation. TechniStrip® P1316 can also be used in spraying processes. For alkaline sensitive materials, TechniStrip® P1331 would be an alternative to the P1316. Nicht kompatibel mit Au oder GaAs. TechniStrip® P1331 can be an alternative for TechniStrip® P1316 in case of alkaline sensitive materials. TechniStrip® P1331 is not compatible with Au or GaAs. **TechniStrip**® **NI555** is a stripper with very strong dissolving power for Novolak-based negative resists such as the AZ® 15 nXT and AZ® nLOF 2000 series and very thick positive resists such as the AZ® 40 XT. TechniStrip® NI555 was developed not only to peel cross-linked resists, but also to dissolve them without residues. This prevents contamination of the basin and filter by resist particles and skins, as can occur with standard strippers. TechniStrip® NI555 is not compatible with GaAs. TechniCleanTM CA25 is a semi-aqueous proprietary blend formulated to address post etch residue (PER) removal for all interconnect and technology nodes. Extremely efficient at quickly and selectively removing organo-metal oxides from Al. Cu. Ti. TiN. W and Ni. TechniStrip™ NF52 is a highly effective remover for negative resists (liquid resists as well as dry films). The intrinsic nature of the additives and solvent make the blend totally compatible with metals used throughout the BEOL interconnects to WLP bumping applications. **TechniStrip™ Micro D2** is a versatile stripper dedicated to address resin lift-off and dissolution on negative and positive tone resist. The organic mixture blend has the particularity to offer high metal and material compatibility allowing to be used on all stacks and particularly on fragile III/V substrates for instance. **TechniStrip™ MLO 07** is a highly efficient positive and negative tone photoresist remover used for IR, III/V, MEMS, Photonic, TSV mask, solder bumping and hard disk stripping applications. Developed to address high dissolution performance and high material compatibility on Cu, Al, Sn/Ag, Alumina and common organic substrates. ### Our Wafers and their Specifications #### Silicon-, Quartz-, Fused Silica and Glass Wafers Silicon wafers are either produced via the Czochralski- (CZ-) or Float zone- (FZ-) method. The more expensive FZ wafers are primarily reasonable if very high-ohmic wafers (> 100 Ohm cm) are required. Quartz wafers are made of monocrystalline SiO₂, main criterion is the crystal orientation (e. g. X-, Y-, Z-, AT- or ST-cut) Fused silica wafers consist of amorphous SiO₂. The so-called JGS2 wafers have a high transmission in the range of ≈ 280 - 2000 nm wavelength, the more expensive JGS1 wafers at ≈ 220 - 1100 nm. Our glass wafers, if not otherwise specified, are made of borosilicate glass. #### **Specifications** Common parameters for all wafers are diameter, thickness and surface (1- or 2-side polished). Fused silica wafers are made either of JGS1 or JGS2 material, for quartz wafers the crystal orientation needs to be defined. For silicon wafers, beside the crystal orientation (<100> or <111>) the doping (n- or p-type) as well as the resistivity (Ohm cm) are selection criteria. #### Prime-, Test-, and Dummy Wafers Silicon wafers usually come as "Prime-grade" or "Test-grade", latter mainly have a slightly broader particle specification. "Dummy-Wafers" neither fulfill Prime- nor Test-grade for different possible reasons (e. g. very broad or missing specification of one or several parameters, reclaim wafers, no particle specification) but might be a cheap alternative for e. g. resist coating tests or equipment start-up. #### Our Silicon-, Quartz-, Fused Silica and Glass Wafers Our frequently updated wafer stock list can be found here: è www.microchemicals.com/products/wafers/waferlist.html #### **Further Products from our Portfolio** #### **Plating** Plating solutions for e. g. gold, copper, nickel, tin or palladium: è www.microchemicals.com/products/electroplating.html Solvents (MOS, VLSI, ULSI) Acetone, isopropyl alcohol, MEK, DMSO, cyclopentanone, butylacetate, ... è www.microchemicals.com/products/solvents.html Acids and Bases (MOS, VLSI, ULSI) Hydrochloric acid, sulphuric acid, nitric acid, KOH, TMAH, ... è www.microchemicals.com/products/etchants.html **Etching Mixtures** for e. g. chromium, gold, silicon, copper, titanium, ... è www.microchemicals.com/products/etching mixtures.html ### **Further Information** Technical Data Sheets: www.microchemicals.com/downloads/product_data_sheets/photoresists.html Material Safety Data Sheets (MSDS): www.microchemicals.com/downloads/safety_data_sheets/msds_links.html ## **Our Photolithography Book and -Posters** We see it as our main task to make you understand all aspects of microstructuring in an application-oriented way. At present, we have implemented this claim with our book **Photolithography** on over 200 pages, as well as attractively designed DIN A0 posters for your office or laboratory. We will gladly send both of these to you free of charge as our customer (if applicable, we charge shipping costs for non-European deliveries): www.microchemicals.com/downloads/brochures.html www.microchemicals.com/downloads/posters.html Thank you for your interest! ## **Disclaimer of Warranty & Trademarks** All information, process descriptions, recipes, etc. contained in this document are compiled to the best of our knowledge. Nevertheless, we can not guarantee the correctness of the information. Particularly with regard to the formulations for chemical (etching) processes we assume no guarantee for the correct specification of the components, the mixing conditions, the preparation of the batches and their application. The safe sequence of mixing components of a recipe usually does not correspond to the order of their listing. We do not warrant the full disclosure of any indications (among other things, health, work safety) of the risks associated with the preparation and use of the recipes and processes. The information in this book is based on our current knowledge and experience. Due to the abundance of possible influences in the processing and application of our products, they do not exempt the user from their own tests and trials. A guarantee of certain properties or suitability for a specific application can not be derived from our data. As a matter of principle, each employee is required to provide sufficient information in advance in the appropriate cases in order to prevent damage to persons and equipment. All descriptions, illustrations, data, conditions, weights, etc. can be changed without prior notice and do not constitute a contractually agreed product characteristics. The user of our products is responsible for any proprietary rights and existing laws. Merck, Merck Performance Materials, AZ, the AZ logo, and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany MicroChemicals GmbH Fon: +49 (0)731 977 343 0 Nicolaus-Otto-Str. 39 Fax: +49 (0)731 977 343 29 89079, Ulm e-Mail: info@microchemicals.net Germany Internet: www.microchemicals.net